

## PBC-003-103002

Seat No. \_\_\_\_\_

## B. Sc. (Sem. III) (CBCS) Examination

November / December - 2018

Physics: Paper - 301

(New Course)

Faculty Code: 003

Subject Code: 103002

| Tim | e: 2 | $\frac{1}{2}$ Hours] [Total Marks:                                                                                                                                            | 70 |
|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1   | (a)  | Give the correct answers of following questions:  (1) Define Scalar quantity.  (2) Div (Curl f) =  (3) $\vec{A} \cdot (\vec{B} \times \vec{C}) =$ of the parallellopiped.     | 4  |
|     |      | (4) The net outward flux of some vector quantity through a closed surface can be represented by which quantity?                                                               |    |
|     | (b)  | Answer in brief: (any one)                                                                                                                                                    | 2  |
|     |      | <ul> <li>(1) Find the gradient of f(x, y, z) = x<sup>3</sup> + y<sup>4</sup> + z<sup>2</sup>.</li> <li>(2) Find the divergence of F(x, y) = 4x<sup>2</sup>î + 4yĵ.</li> </ul> |    |
|     | (c)  | Answer in detail : (any one)                                                                                                                                                  | 3  |
|     |      | <ul><li>(1) Explain the vector triple product.</li><li>(2) Explain the divergence of vector field.</li></ul>                                                                  |    |
|     | (d)  | <ul><li>Write a note on following: (any one)</li><li>(1) Explain in detail how vector transform from one system to another system.</li></ul>                                  | 5  |
|     |      | (2) Explain the fundamental theorems of curls.                                                                                                                                |    |
| 2   | (a)  | Give the correct answers of following questions:  (1) State the Coulomb's law.  (2) What is the unit of electric flux?                                                        | 4  |
|     |      | (3) $\nabla \times \vec{E} = \underline{\qquad}$                                                                                                                              |    |

(4) Write the Poisson's equation.

- (b) Answer in brief: (any one)
  - (1) A uniformly charged sphere has a total charge of 200 μ C and radius of 4 cm. Find the electric field intensity at a point 20 cm away from the center of the sphere.
  - (2) Calculate the divergence of the electric field given by  $5\hat{i} y\hat{j} z\hat{k}$ .
- (c) Answer in detail: (any one)

3

2

- (1) Discuss the curl of E.
- (2) Explain the energy of a point charge distribution.
- (d) Write a note on following: (any one)

5

4

- Derive the Gauss's law in differential and integral form.
- (2) Explain the electric field due to a uniformly charged thin spherical shell.
- **3** (a) Give the correct answers of following questions:
  - (1) If a charged particle moves in a magnetic field, whether potential energy changes, do you agree? (Yes / No)
  - (2) Write the formula for Ampere's law in differential form.
  - (3) If equal currents are passing through two very long and straight parallel wires in same directions, what happens between them?
  - (4) If a point charge is in motion, can we apply Biot-Savart law to find out the value of current?
  - (b) Answer in brief: (any one)

2

(1) Calculate the magnitude of the magnetic field due to a long thin wire carrying current of 20 Amp at a distance of 4 cm from the wire.

$$\left(\mu_0 = 4\pi \times 10^{-7} N / A^2\right)$$

(2) A particle having 4 Coulomb charge passes through magnetic field at  $4\hat{k}T$  and some uniform electric field with velocity  $25 \hat{j}$ . If the Lorentz force acting on it is  $400\hat{i} N$ . Find the electric field in this region.

- 3 (c) Answer in detail : (any **one**) Discuss the straight - line currents by using Biot (1) - Savart Law. Explain: Divergence of magnetic field B. Write a note on following: (any one) 5 (d) (1) Give the quantitative explanation of cycloid motion. What is Ampere's Law? Find out the magnetic field inside a long solenoid using Ampere's Circuital law. Give the correct answers of following questions: 4 (a) Define dielectrics. (1) (2) What is the susceptibility of wood in vacuum? What happens when paramagnetic material place in external magnetic field? What is the unit of Permeability? 2 (b) Answer in brief: (any one) When you polarize a neutral dielectric, charge moves a bit but the total charge remains zero. This fact should be reflected in the bound charges  $\sigma_h$ and  $\rho_b$ . Prove that the total bound charge vanishes. An infinitely long circular cylinder carries a uniform magnetization  $\overrightarrow{M}$ , parallel to its axis. Find the magnetic field due to  $\overrightarrow{M}$ , inside the cylinder. Answer in detail : (any one) 3 (c) **(1)** Discuss Gauss's law in the presence of dielectric. Explain the magnetization of material. Write a note on following: (any one) 5 (d)
  - (1) Discuss the alignment of polar molecules.

    (2) Explain the magnetic field on atomic arbits w
  - (2) Explain the magnetic field on atomic orbits with necessary equations.

4

- 5 (a) Give the correct answers of following questions: 4
  - (1) What is transistor biasing?
  - (2) What is active region in transistor?
  - (3) If output has been taken across  $R_c$ , whether phase reversal take place or not ?
  - (4) What is a. c. load line?
  - (b) Answer in brief: (any one)
    - (1) A Germanium transistor is to be operated at zero signal  $I_c$  = 2 mA. The collector supply  $V_{cc}$  = 20V, calculate the value of  $R_B$  in base transistor method. ( $\beta$  = 100)
    - (2) Calculate the voltage gain for transistor amplifier having  $R_c=3K\Omega$ ,  $R_L=2K\Omega$ ,  $R_{in}=2K\Omega$  and  $\beta=100$ .
  - (c) Answer in detail : (any one)
    - (1) Discuss biasing with Emitter bias method.
    - (2) Explain bandwidth of single stage transistor amplifier.
  - (d) Write a note on following: (any one)
    - (1) Discuss base resistor method of transistor biasing in detail.
    - (2) Explain d. c. and a. c. load line analysis for the single stage transistor amplifier.

2

3

5